
01001100 01100101
01110100 00100000
01110100 01101000
01100101 00100000
01100110 01110101
01110100 01110101
01110010 01100101
00100000 01110100
01100101 01101100
01101100 00100000
01110100 01101000
01100101 00100000
01110100 01110010
01110101 01110100
01101000 00101100
00100000 01100001
01101110 01100100
00100000 01100101
01110110 01100001
01101100 01110101
01100001 01110100
01100101 00100000
01100101 01100001
01100011 01101000
00100000 01101111
01101110 01100101

with the
ARD2-INNOV8

Seven Vinton and Mark Trezise

1st edition

Coding Innov8ion

It’s a
SNAP!

and Snap4Arduino

Visual - block coding

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

2

Content Index

Coding Innov8ion, it’s a Snap!
with the ARD2- INNOV8 and Snap4Arduino

Visual-block programming guide

Coding INNOV8ion it’s a Snap! – with the ARD2-INNOV8 and Snap4Arduino - visual-block
programming guide by Seven Vinton and Mark Trezise. A self-published eBook.
© 2017 Copyright Seven Vinton & Mark Trezise
All rights reserved. No portion of this book may be reproduced in any form without permission from the
publisher, except as permitted under the Copyright Act 1968.
The code and video materials associated with this publication may be shared as long as this book and its
authors are acknowledged.
Educational organisations may purchase an annual site licence for the use and for the copying of this book
for the intention of supporting learning within classes. For more information and to purchase an “Annual
Site Licence” go to www.wiltronics.com.au/ard2
Illustrations by Seven Vinton.
Some of the photographs in this book were obtained under the creative commons CC0 1.0 Universal (CC0
1.0).

“Arduino” is a trademark of Arduino.cc
“ARD2-INNOV8” is a trademark of Wiltronics Research Pty Ltd.

ISBN: 978-0-6480792-0-0

Disclaimer

The information provided in this book is for educational purposes only. Whilst great care has been taken in
the preparation of the contents of this book, the authors of this book and the ARD2-INNOV8 team take no
liability or responsibility for any errors or omissions, or any loss or damage resulting from the use of any
information provided in this book or any of the linked websites or online video tutorials. Any use of the
information provided is at your own risk.
There are no warranties, expressed or implied, about the accuracy or reliability of the information
provided, or as to the availability and suitability of any of the technologies discussed in this book, as this
will vary from case to case.

Acknowledgements

Thank you to Joan Guillén i Pelegay and Bernat Romagosa (Snap4Arduino
Developer) for their help and assistance with Snap4Arduino code blocks.

Thank you to Ethan Zerafa (aged 11) for testing the book and the code.

Thank you to Rain Richardson for proofreading.

Firebugs Educational Resources

http://www.wiltronics.com.au/ard2

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

3

Content Index

Contents

Section A - Getting Started

What is the INNOV8 Shield?						 4	
The ARD2-INNOV8 story							 5	
What is Arduino and why do I need it?					 5
Why use the ARD2-INNOV8?						 6
Getting started with your ARD2-INNOV8				 7
Using Snap4Arduino							 8
How to set up Snap4Arduino on your computer				 9

Section B - ARD2-INNOV8 Programming Lessons

About the lessons in this book – note to teacher				 11
Loading the firmware							 11
Some basic electronics							 13
Lesson 1 - Blink – Your first sketch					 14
QuickBlocks - Quick and easy code					 18
Lesson 2 – Using variables							 20
Lesson 3 - Using control structures to simplify code			 24
Lesson 4 – Introducing chance						 27
Lesson 5 – Dice								 30
Lesson 6 - Variable Tones							 33
Lesson 7 – Banana Keyboard						 36
Lesson 8 - Temperature Sensor						 39
Lesson 9 - Traffic lights							 41
Lesson 10 – Using servo motors						 47
Final Challenge – Putting it all together					 50

Section C - Reference

Double traffic light solution							 55
Glossary of terms								 56
Author information								 58

Here’s what you need to start
programming with the ARD2-INNOV8

A computer (Windows, Mac, Linux)
USB Cable

Arduino Uno
ARD2-INNOV8 Shield

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

4

Content Index

What is the INNOV8 Shield?

The ARD2-INNOV8 shield is a piece of technology which has various outputs
and inputs, and sits on top of an Arduino Uno compatible micro-controller board
(other compatible boards can be found here: http://playground.arduino.cc/Main/SimilarBoards)
The ARD2-INNOV8 shield has been fitted with 7 LEDs (light emitting diodes), a
piezo buzzer, a bush button switch, a potentiometer, a light sensor, a temperature
sensor, a 6 volt input, and convenient snap in connectors to use with a wide range
of external modules such as servo motors, joystick module, and a real-time-clock
module.
The ARD2-INNOV8 shield was designed to take the headache out of learning
how to program a microcontroller like the Arduino Uno. It allows the user to
learn a wide range of Arduino lessons without the hassle of wiring up all of the
required components. The ARD2-INNOV8 shield helps make learning Arduino
programming easy, by allowing the user to concentrate on the programming
without being distracted by bugs in the circuit.

Figure 1. Components on the ARD2-INNOV8 Shield

You can do over
40 different coding
projects with the
ARD2-INNOV8

http://playground.arduino.cc/Main/SimilarBoards

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

5

Content Index

The ARD2-INNOV8 story

The ARD2-INNOV8 story is a story of innovation and collaboration; it is a story
of perseverance, life-long learning, and community.
The two authors of this book Seven Vinton and Mark Trezise are both technology
enthusiasts. Their passion for learning inspired them to form a partnership to help
make this learning available to others via online videos, learning resources, and
learning seminars & expos.
During one of these student seminars Seven and Mark started to discuss ways
to make Arduino programming easier for students. They had used many devices
which aimed to make Arduino programming easier, however, all of these devices
fell short in one way or another.
Seven and Mark met with the CEO of Wiltronics, Richard Wilson in December of
2016 to discuss how they could work together to promote learning of technologies
like the Arduino devices, and at this meeting they aired their frustrations about the
failings of the available technologies. Richard’s answer was simple, “Let’s make
our own!”
From this meeting the prototype design for the ARD2-INNOV8 shield was
developed by Seven and Mark along with its name, and upon receiving these
designs Richard enlisted the help of his colleague Ben Sieira at CognetronicS to
design the wiring layout and electronics engineering for the shield.
As previously mentioned, this story is a story of collaboration, however, this
story of collaboration is a little different from other stories you may have heard,
because Seven is a secondary school teacher, and Mark is a student (year 10 at the
time). This collaboration between teacher, student, and industry experts is rare,
but it is a form of collaboration which needs to happen more if our country is
going to be competitive in the world’s technology market.
This partnership is truly innovative, which is why the name ARD2-INNOV8 was
chosen for the shield.
The ARD2-INNOV8 shield is a piece of technology designed for students and
teachers by a student and teacher in collaboration with two great Australian
technology companies.
This story should inspire you to realise that with effort, creativity, and thinking,
you could become the creator of the next innovative piece of technology.

What is Arduino and why do I need it?

Your ARD2-INNOV8 shield can let you do many cool things, however, it cannot
think on its own, because it does not have its own micro-controller. To run
programs through your ARD2-INNOV8, you need to sit it on top of a micro-
controller like the Arduino Uno.
Arduino is a hardware platform which is built around a micro-controller. Many
different boards have been developed as part of the open source movement by the
Arduino community. Arduino boards have been used in thousands of projects over
the years by innovators both young and old, producing a wide range of designs
from: robots to: musical instruments, from: children’s toys to: scientific measuring
devices.
Arduino boards are used in schools for learning how to program, and they are
used by professional electrical engineers to make innovative products.

The most widely known and used board is the Arduino Uno. The Arduino Uno
board is very versatile and reliable, and the design has been replicated by a
number of technology companies and novices worldwide, ensuring that this
technology is easily available across the world. The Arduino Uno will be the
board used in all of the lessons and projects in this book.

Figure 2. A selection of different micro-controller development boards

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

7

Content Index

Getting started with your ARD2-INNOV8

A match made in heaven - Putting the ARD2-INNOV8 and
Arduino together

There are a few things that you need to do before you can start programming and
interfacing with your ARD2-INNOV8 Shield.
The most important of these things is that you need to have an Arduino
compatible board such as the Arduino Uno that you can attach to the ARD2-
INNOV8.
The reason that you need this Arduino compatible board is the ARD2-INNOV8
shield only provides an interface to components like LEDs and a button, but it
does not have its own micro-controller, and without a micro-controller you cannot
do any programming.
So the first step in programming with the ARD2-INNOV8 is to ensure that you
have your ARD2-INNOV8 firmly attached to an Arduino Uno compatible board.
When attaching your ARD2-INNOV8 to an Arduino Uno compatible board, you
should take extra care to ensure that all of the pins under the ARD2-INNOV8 are
perfectly aligned with the socket headers on the Arduino (see Figure 6).

Figure 6. Ensure the pins under your ARD2-INNOV8 line up
with the header sockets on your Arduino board

Figure 7. Your ARD2-INNOV8 and Arduino board should look like this when fitted
together

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

8

Content Index

Using Snap4Arduino

Programs run on Arduino micro-controller boards are referred to as sketches.
There are many programming platforms available to use for Arduino
programming, but most use text-based code.
Snap4Arduino is a modification of Snap!, a visual block programming
environment which lets you drag-and-drop code blocks to create programs.
Snap! (presented by University of California at Berkeley) is an alternative
extension to Scratch (presented by the MIT Media Lab).
Snap4Arduino was created to allow drag-and-drop programming of Arduino
boards and shields. It is a great place to start for younger learners and first-time
Arduino programmers, but you may wish to use text-based code with the Arduino
IDE (integrated development environment) when you advance to more complex
programs.

Programs created in the Arduino IDE are uploaded (compiled) to the board,
whereas programs created in Snap4Arduino are sent as instructions to the board
when the program is running via a firmware program which has been loaded onto
the Arduino board.

When you design code for your ARD2-INNOV8 shield and use its hardware
components, you will be doing what is known as prototyping. Prototyping is when
you make a limited working model of something to test a concept or idea.
Prototyping with the ARD2-INNOV8 is faster and much easier to setup.

Figure 8. The Snap4Arduino website, where you can download the programming software

http://snap.berkeley.edu/
https://scratch.mit.edu/
http://snap4arduino.org/

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

9

Content Index

How to set up Snap4Arduino on your computer

The Snap4Arduino website will provide you with all of the information you will
need to successfully install Snap4Arduino onto your computer. You will also
need to download and install the Arduino IDE from the Arduino website. This is
discussed in a later section of this book.
Video guides demonstrating how to install this software are available on the
Firebugs Youtube channel.

The Snap4Arduino programming environment

The Snap4Arduino programming environment or IDE (integrated development
environment) is very easy to use, and is very similar to Scratch and other drag-
and-drop programming environments.
You can select code blocks from the programming block libraries: Motion, Looks,
Sound, Pen, Control, Sensing, Operators, Variables, Arduino, and Other.

In this guidebook we will be using code blocks from most of these libraries, but
not all of them.
The centre area of the IDE is where you build your program by dragging on
blocks from the code block libraries (Figure 9).

On the left of the IDE is where you access the code libraries, and on the right
of the IDE is the Stage where you see the action and see your variables and
how they are changing. You will get to see how this works when you start
programming.
The Snap4Arduino IDE has a special library which contains code blocks that are
for programming the Arduino. This library also contains buttons to connect and
disconnect your Arduino board (Figure 9).

The Other code block library does not contain any blocks, but instead contains a
single button which allows you to create your own code block functions. You will
get to see how this works in Lesson 9.

Figure 9. The Snap4Arduino programming environment

http://snap4arduino.org/
https://www.arduino.cc/en/Main/Software
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

G
et

ti
n

g
 s

ta
rt

ed
 w

it
h

 t
h

e
A

R
D

2
-I

N
N

O
V

8
 -

 S
ec

ti
on

 A

10

Content Index

Creating and duplicating blocks

Creating new code blocks is easy; simply drag the block you want from its library
into the programming window (Figure 11).

You can easily duplicate blocks by right-clicking on the block you want to copy,
and then selecting duplicate. You can also delete blocks this way, or simply drag
the block back to its library and it will disappear.

Zooming in and out

You can increase or decrease the size of your blocks so they are easier to see by
selecting Zoom blocks from the Settings menu (cog icon – Figure 13).
In the Zoom blocks window you can choose what size you want your blocks to be.

Saving, importing, and exporting

Saving, importing, and exporting is easy, and is done via the File menu.
Common key shortcuts like Ctrl-S (Command +s) for save can also be used,
and you can choose to save your projects into the projects folder or to the
Snap4Arduino cloud if you have an account (account activation is free).

Figure 10. Programming blocks within the Arduino library

Figure 11. New code blocks can be created by dragging blocks into the
programming window

Figure 12. Options available when right-clicking on a block

Figure 13. The File, Cloud, and Settings
menus

Figure 14. The Zoom blocks
menu, where you can choose
the size of your blocks

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

11

Content Index

About the lessons in this book

Note to teacher

Each lesson in this book is designed to build capacity with a particular set of
programming knowledge, skills, and problem solving. There is a key focus,
and key words in each lesson, and most lessons build onto each other. Learning
scaffolding is reduced as the lessons proceed, but the teacher may need to
introduce further scaffolding when teaching junior levels.
There is a difficulty or challenge rating for each lesson represented by a number
of heads:

This head of course belongs to Nicola Tesla, the famous inventor from the early
1900s whose creativity and ingenuity knew no bounds.
Learners who are having difficulty grasping the concepts in the more challenging
lessons should skip them and come back to them later. Lessons can be approached
by first copying and implementing the code, making observations, and then
returning to the text once an understanding of the working system has been
gained.
There is also a Quick Blocks section just after Lesson 1, which provides all of the
basic sketches needed to run components on the ARD2-INNOV8 shield.

Loading the lesson code and
resources onto your computer

Download the ARD2-INNOV8-SNAP resources folder from the Wiltronics or
Firebugs websites.
Unzip this folder to an easy to find location somewhere on your computer.
This folder contains all of the lesson code which you can import into
Snap4Arduino if you get stuck, and it also contains other learning resources.

Loading the firmware

To program your board with Snap4Arduino you will first need to install firmware
using the Arduino IDE.Download and install the Arduino IDE onto your computer
from the Arduino website.
Once you have this software installed onto your computer:
•	 Run the Arduino program on your computer.
•	 Connect your Arduino board with ARD2-INNOV8 shield attached to your

computer using the USB cable.
•	 Check that your board is connect by looking under: Tools > Port:
•	 You should see a tick next to one of the serial ports listed (this looks slightly

different on a MAC and Linux computer, but the process is much the same)
[see Figure 15].

Figure 15. How to check for port connection under the Tools menu (PC screenshot)

https://www.wiltronics.com.au/
http://www.firebugs.com.au/
https://www.arduino.cc/en/Main/Software

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

12

Content Index

Open the StandardFirmata sketch from: File > Examples > Firmata

Load this StandardFirmata sketch onto your board by clicking on the Upload
button

If you see the message Done uploading at the bottom of the programming
window, then you are all set to program with Snap4Arduino.

Connecting your board to Snap4Arduino

Next you will need to connect your board to the Snap4Arduino program.
Within the Arduino blocks library you will see two buttons at the top. These are
Connect Arduino and Disconnect Arduino.

When you click on the Connect Arduino button you should see the port to which
your board is connected (the port number should be the same as when you
connected to the Arduino IDE) [this looks slightly different on MAC and Linux].
Select the correct port number and you should then be greeted with the message in
Figure 20.

If you have trouble connecting your board, watch the video called Blink – First
Sketch under the Snap4Arduino section on the Firebugs Youtube channel.
You will need to do this every time you open or create a new sketch.

Alternatively, you can include this block at the top of your sketch which will then
automatically connect the Arduino board at the chosen port once the sketch is run.

Figure 16. Where to find the StandardFirmata sketch (firmware)

Figure 17. Clicking the Upload button loads the sketch to your board

Figure 19. COM ports are visible when the Connect Arduino button is pressed

Figure 20. The message seen when a board has been successfully connected

Figure 21. When this block is initiated it will connect the Arduino at COM port 4

Figure 18. The connect and disconnect buttons for your board

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

13

Content Index

Some basic electronics

You will need to know a little bit of electronics to fully understand the lessons in
this book. Here are explanations of some of the electronic components found on
the ARD2-INNOV8 shield.

Image Diagram Name What it does
LED (light emitting diode) Gives off light when an electric current is applied.

Electricity can only flow one way through a LED.
There are many colours available.
This image shows a standard LED; the LEDs on the ARD2-INNOV8 are small ‘surface
mount’ LEDs.

Resistor Slows the electric current down. It acts like a bumpy road slowing cars down.
The coloured bands on a resistor show its value – measured in Ohms. You use a resistor in
series with a LED to protect the LED.
This image shows a standard resistor; the resistors on the ARD2-INNOV8 are small
‘surface mount’ resistors.

Push Button Connects a circuit when the button is pressed. There are many different types of push
buttons; this one is known as a momentary SPST switch.
There are two of these on the ARD2-INNOV8: one can be used in program sketches, and
the other is used to reset the code.

Potentiometer Much like a resistor, but its resistance value can be changed by turning its knob. It has
three legs.
Used as a control knob to vary a value. Can be used to turn volume up and down, or to
dim a LED from dull to bright.

LDR (light dependent resistor) Changes its resistance value when light falls onto it.
Can be used as part of a circuit to switch lights on when it gets dark.

Temperature Sensor Used to sense temperature.
Can read temperature from -40C to +125C.
Reads as a voltage which then needs to be converted in the code to temperature.

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

14

Content Index

Lesson 1 - Blink – Your first sketch

Inputs, Processes, and Outputs

In all of the lessons in this book we are going to be working with digital devices
(the ARD2-INNOV8 and Arduino Uno) which have inputs, processes, and
outputs.
All systems have at least one input, one process, and one output, however, most
systems have more than one of each of these.
In the following lessons you will be working on the process side of digital
systems, and programming them to use a number of inputs (such as a button press)
and outputs (such as the lighting of a LED).
To get us started, think about some of the digital systems in your home and try to
fill in the missing information in the table opposite.

Fill in the blanks in the table below:

System Inputs Process Desired Outputs
Washing Machine Electricity, button

presses, sensor data
Fill (water), wash
(agitate), spin,
various options

Motion (rotary),
sound (beeps),
light(LEDs)

Smart TV Electricity,
data(signal), button
presses, IR remote
signal, Internet data,
BlueTooth data

Game System User interface,
provide games,
connect to internet,
connect to hand-
controller, play
disks

Dish Washer Motion (rotary),
water pressure, heat,
sound (beeps), light
(LEDs)

Air Conditioner Electricity, button
presses, sensor data

Key words: firmware, input, output, process, system,
LED, sketch, control structure, loop, operator, Boolean,
digital, pseudo-code, debugging
Key focus: Snap4Arduino IDE, basic coding, basic
electronics, systems knowledge, using loops

What are some
other digital

systems in your
home?

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

15

Content Index

Setting up the code blocks

The very first sketch that Arduino programmers run on their boards is the Blink
sketch.
This sketch blinks an LED (light emitting diode) on and off at specific timings.
The Blink sketch allows you to test your board, and gives you an opportunity to
learn the code basics.
The blocks that we will use in this sketch are:

The when clicked block, found within the Control blocks library, runs/starts the
program when you click on it.
This block is placed at the top of your code blocks, with all other blocks
connected underneath.
There are a few different blocks which you can use instead of this block such as
the when _ key pressed block.

The forever block is a control structure, found within the Control blocks library.
This block runs the code within it forever (in a loop), until the program is stopped
by clicking back onto the when clicked block or if the board is disconnected.

The set digital pin_ to_ block, found within the Arduino blocks library.
This block does two things: it defines the pin number which will be used, and it
sets this pin to either TRUE or FALSE (HIGH or LOW – ON or OFF) with the use
of the true/false operators (Figure 25). Pin numbers can be typed into the space
provided.

The true/false operators, found within the Operators blocks library, are used to
set the state of something. Their value is Boolean - either TRUE or FALSE. In the
case of the Blink sketch, we will use these operators to set the LED attached to pin
13 to ON or OFF. These operator blocks can be dropped inside other blocks by
dragging them over the appropriate part of the block.

The wait block, found within the Control blocks library, causes the program to
pause for the time specified. The block pictured in Figure 27 shows a block which
will cause the code to pause for 1 second.					
	

Figure 22. The When clicked block

Figure 23. The forever block

Figure 24. The Set digital pin
block

Figure 25. The true/false operators

Figure 26. Blocks can be dropped
inside of other blocks

Figure 27. The wait block

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

16

Content Index

Jumper position

The ARD2-INNOV8 board has pin jumpers which need to be placed in certain
positions to use components on the shield. For lessons 1 to 9, make sure that your
ARD2-INNOV8 shield has its pin jumpers placed in the position shown in Figure
28.

The Blink Sketch

The sketch shown in Figure 29 would look like this if written in structured
English (pseudo-code).

Blink Sketch

WHILE

	 SET digital pin 13 to TRUE

	 WAIT 1 second

	 SET digital pin 13 to FALSE

	 WAIT 1 second

ENDWHILE

EXIT

Study this code and the code in Figure 29 and try to work out what will happen,
then create the blocks as shown.
After you have constructed your sketch using the right blocks, make sure that
your board is connected and then click on the when clicked block.

You should see a halo form around the blocks (Figure 30), and your ARD2-
INNOV8 shield should be doing something.

What is happening on your ARD2-INNOV8, did you see any LEDs blinking on
and off?
If you did not see one of the LEDs on your ARD2-INNOV8 blinking on and off,
then something has gone wrong.
When something goes wrong with digital systems we say that there is a bug in the
system. The process of fixing the problem is known as debugging.
Fix your system and sketch by debugging the code. Check that your board is
connected and that the pin jumpers are in the correct position (Figure 28).

Figure 28. Ensure the jumpers are in this position for the Blink sketch

Figure 29. The Blink sketch

Figure 30. Halo around the blocks when active (clicked)

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

17

Content Index

Now try this

Add in more digital pin blocks and select different pin numbers to see what
happens.
The LED pins on your ARD2-INNOV8 are 2, 3, 4, 7, 11, 12, and 13.

Try playing with the code blocks to see if you can:
•	 Make all 7 LEDs blink on and off
•	 Make the 7 LEDs blink on and off one after the other
•	 Changing the blinking speed (rate) to create a light pattern

Figure 31b. The Blink sketch with added LED pins

Figure 31b. A different version of the sketch in Figure 31a

Look at the two code
examples on this page.

Can you predict what the
pattern will be for each?

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

18

Content Index

QuickBlocks

The following seven images show how you can build quick program sketches to
use the inputs and outputs on the ARD2-INNOV8 shield. These examples provide
only the very basics, however, the following lessons will explain how to build
proper programs.
If you found Lesson 1 difficult, then you may wish to play with the 7 examples
in this Quickblocks section, but if you are keen to continue to learn real
programming then you can skip ahead to Lesson 2.

Figure 32. Blink an LED (this code will blink the LED on pin 13)
Figure 35. Change the sound pitch with the potentiometer (you need to import the map
block for this program– refer to Lesson 6)

Figure 34. Fade an LED with the potentiometer (you need to import the map block for
this program – refer to Lesson 6)

Figure 33. Turn an LED on with a button press

Blink a light

Blink a LED with a button

Fade a LED by turning a knob

Change sounds by turning a knob

Difficulty Level

Press button D8 and observe what happens.

Twist the knob of the potentiometer and observe what happens.

Twist the knob of the potentiometer and observe what happens.

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

19

Content Index

Figure 36. Move a servo motor with a button press (Lesson 10 shows how to attach the
servo motor)

Figure 37. Turn an LED on when the light level falls on the LDR sensor (you may need
to adjust the number ‘50’ up or down)

Figure 38. Turn an LED on when the temperature rises above a certain point (you may
need to adjust the number ‘162’ up or down a little)

Try other combinations
with these code blocks to
create different solutions.
The next 10 lessons will
help you to learn real

programming.

Move a motor with a button

Turn a LED on when it gets hot

Turn a LED on when it gets dark
Place your finger over the LDR and observe what happens.

Press your finger against the temperature sensor and observe what happens.

Press button D8 and observe what happens.

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

20

Content Index

Lesson 2 – Using variables

In Lesson 1 you were able to blink the LED attached to pin 13 ON and OFF by
using the correct code blocks.
You used the set digital pin code block to set the LED pin true (HIGH) or false
(LOW), and you used the wait block to delay the time between the ON and OFF
state of the LED.
In actual Arduino code the Blink sketch looks like this:

int led1 = 13; // a variable for the LED pin

void setup(){

// initialize led1 pin as an output

	 pinMode(led1, OUTPUT);}

void loop(){

	 digitalWrite(led1, HIGH); // turn LED1 on

	 delay(1000); // wait for a 1000 milliseconds

	 digitalWrite(led1, LOW); // turn LED1 off

	 delay(1000); // wait for a 1000 milliseconds}

In this code you can see that we use words in place of blocks. Text-based code is
the preferred option for most professional programmers, because once you know
how to use the code it is much easier to write programs with text rather than using
blocks. When you are first learning how to program however, it is much easier to
understand if you can see the program structures. This is why many students learn
programming by starting with visual-block programming, like the code used by
Snap4Arduino.

Learning programming by first using blocks is helpful, because mistakes are
easier to spot, and many of the programming structures are the same as they are
for text-based code.

Programmers also place comments within their code to help other people
understand how parts of the code work. Within this text-based code you can see
text which looks like this: // a variable for the LED pin
In Arduino programs text which has two forward slashes before it like this // is
ignored by the micro-controller. This text is only for the human reader.

In the text-based code above you can see that instead of the set digital pin code
block we have used the digitalWrite() function, and instead of the wait
code block we have the delay() function.

You can also see that there is a setup section (void setup), and a loop section
(void loop). The loop section works exactly the same as the forever block in
our Snap4Arduino block code.

One of the main differences between this text-based code and our visual-block
code is that in this text-based code we have used a variable to hold the pin
number instead of just using the number 13.

digitalWrite(led1, HIGH);

A variable is simple a placeholder (container) which can hold a value that can
be changed. Variables are very handy things within programs because they allow
values to be changed as the program runs, for example: Imagine if you were
playing a computer game where the score did not change when you scored a new
point. This would make the game very boring. Variables in this situation allow the
score to change in value every time you make a new score in the game.

Key words: Visual-block, text-based, loop, variable,
declare, define, data structure, control structure
Key focus: How to create (declare and define) and use
variables

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

21

Content Index

In order to use a variable, we first need to create it at the top of our code.
In text based Arduino programming we do it like this:

int led1 = 13; (here we have declared our variable [named it], and defined
its ititial value).

This statement tells the micro-controller (compiler) that we have a variable named
led1 that holds the value of 13.

Creating variables

Within our Snap4Arduino IDE we create variables like this:
Click on the Variables library and then click on the Make a variable button at the
top of this library.
Name this variable led1. This is called declaring a variable.

Once you have done this and clicked OK you will see this variable appear at the
top of the library.

You can use this variable and set its initial value by using the set_to block, and
you will find the name of your new variable within this block’s drop down menu.
This is called defining a variable.

Now we have a variable to hold the pin number of our LED, but we should also
create a variable to hold the value for delay amount between each blink of the
LED.
We will name our second variable blinkMore, because we will use it to blink our
LED more or less.

You will notice that upon creating these two variables, they appear in the stage
window on the right side of the programming window (Figure 43).

Figure 40. Newly created variables appear
at the top of the Variables library

Figure 39. Creating a variable (declaring) called led1

Figure 43. The Stage area on the
right side of the SanapArduino IDE

Figure 42. Creating a variable called blinkMore

Figure 41. Variable names can
accessed from a dropdown menu on
some blocks

In text-based programming
variables need to be named
in a specific way. Variable
names usually start with a

lowercase letter and must not
begin with a number.

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

22

Content Index

Create the sketch

Set up a new sketch using your new variables as has been done in Figure 45.
In this sketch we will make led1 equal to 2, so that it will blink the LED
connected to pin 2 on the ARD2-INNOV8.
To use your variables within blocks, simply drag the variable name from the
library and drop it onto the appropriate part of the block (see Figure 44).

We can now blink all 7 of our LEDs by creating
variables for each of them: led2, led3, led4, etc.

Apply your knowledge

Using the knowledge gained in this lesson and the
previous lesson, create a new variable for each of
your 7 LEDs, then create a sketch which turns the
LEDs ON one by one, and then turns them OFF one
by one. Use the wait block (with your blinkMore
variable) to include a 1 second delay between each
LED switching ON, and then each LED switching
OFF.
You will need to define the value of each of your
LED variables using the correct pin numbers.
The top part of your code blocks should look like
this:

When using the wait block you should use it with the blinkMore variable like this:

Test your new sketch and observe what happens.
If you have constructed your code correctly then you should observed all 7 of the
LEDs switching on one by one with a second delay between each of them, and
then all 7 LEDs switching off one by one with a 1 second delay between each.

Now that you have successfully created this sketch, change the delay rate within
the wait block to 0.5 seconds by changing the value of the blinkMore variable.
Note that because you have created the blinkMore variable, you do not need to
change each wait block separately. To change the values in all of the wait blocks,
you simply need to change the value of the blinkMore variable from 1 to 0.5.
See how easy it is to change values in your code with variables?
In the following lessons you will see how we can use other data structures and
control structures to make our programs more elegant; which means that we will
make them using less code blocks and make them flow more smoothly.

Figure 44. Variables can be dragged into other blocks

Figure 45. The blinkMore sketch
which uses a variable called
blinkMore

Figure 46. Creating a variable for each
of the 7 LEDs

Figure 47. Defining each of the variables

Figure 48. Using the blinkMore variable to set the delay for the wait block

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

23

Content Index

Now try this

Create another variable so that you have two variables which you can use within
the wait block. You could call this new variable blinkMore2.
Use this variable within your code to produce a sketch which blinks the 7 LEDs in
a set sequence or pattern, such as one which would be used for party or Christmas
lights.
Can you think of a way that you could adjust this code to reduce the number of
blocks in your sketch?
In the next lesson we will learn how to achieve this using a specific control
structure and a new variable.

In 1867 Captain Philip Colomb of the
Royal British Navy used the flashing

light from a ship lantern to communicate
with other ships. This method of

communication eventually adopted the
Morse code language which is still used

for communication today.

Can you think of a way to
communicate a message to

someone using the knowledge
that you have gained in this
lesson and the LEDs on the

ARD2-INNOV8?

Figure 49. Solution for switching all 7
LEDs on, then off, one after the other

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

24

Content Index

Lesson 3 - Using control structures to
simplify code

In the previous lesson you learned how to use variables to make changes easier to
manage, however, when we needed to blink all 7 LEDs our code blocks became
very large and difficult to read.
Thankfully there are structures that exist within programming languages like
Snap4Arduino and Arduino text-based code which allow us to simplify any
repetitive task.
If you look at the code block structure of the sketch in Figure 50, you can see that
this code simply turns all 7 LEDs ON, then waits for 1 second, and then turns all
LEDs OFF. To do this simple action the sketch uses more than 24 blocks. Surely
there must be a better way?

Key words: iteration, list, array, element
Key focus: using control structures, using tracking
variables, pattern recognition

Thankfully we can use data
structures and control structures to
make these types of repetitive jobs
simpler.
A data structure is simply a thing
that can hold data. There are several
types of data structures which can
be used to hold different types of
data. A variable is a simple data
structure.
A control structure is a block of
code which controls the flow of
a program. The forever loop is
a control structure, but there are
several more.
In this lesson we will learn how
to use a data structure called a list
(array) to contain all of our LED
pins, and we will learn how to use
the repeat until control block to set
all of our LED pins to ON and OFF.

Figure 50. Code to blink all 7 LEDs ON and
OFF

A process which is
repeated over and over is

called iteration.
Control structures can
simplify these tasks.

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

25

Content Index

Creating the Blink_list sketch

Create a new sketch from the file menu or use the keyboard shortcut Ctrl+N
(command+N). Call this new sketch Blink_list, and save it into your projects
folder by selecting Save from the File menu or hit Ctrl+S (command+S).
Create a blinkMore variable as you did in the previous lesson, and then create a
second variable called led_pins.
Once you have done this, create a third variable and name it turn. We will use this
variable to keep track of how many turns our control structure takes.
Drag on a When clicked block and then set up your code blocks the same as the
image in Figure 55.
You will need to set up a list structure to hold all of your LED pins.
To do this, drag a list block from the Variables library onto a set_to block (see
Figure 51). Add the 7 numbers for each of the LEDs to this list block by clicking
on the right-arrow in this block.

The repeat until block can be found within the Control blocks library, and the
equals operator can be found within the Operators blocks library.
You will also need to use the item_of_ block which can be found within the
Variables library.
Drag this item_of_ block onto the first space of a set digital pin block (Figure
52).

Drag the turn variable onto the first space of the item_of_ block (Figure 53).

Then drag the led_pins variable to the second space of the item_of_ block (Figure
54).

Remember that there is a video tutorial available on the Firebugs Youtube channel
to help you with this lesson.

Figure 51. A list block can be dragged onto a set_
to block to change this variable into a list

Figure 52. Placing an item_of block inside a set digital pin block

Figure 53. Placing the turn variable inside the item_of block

Figure 55. Code blocks in the blinkList sketch

Figure 54. Placing the led_pins variable inside the item_of block

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

26

Content Index

Once you have set up your code blocks the same as pictured in Figure 55 connect
your board and run this sketch.
If you have constructed the blocks correctly all 7 LEDs should blink ON for one
second and OFF for one second repeatedly, just as they did when the sketch in
Figure 50 was run.
The sketch in Figure 50 uses more than 24 blocks, whereas the sketch in Figure
55 only uses 15 blocks. While this may not seem much of a difference, if you
needed to blink 1000 LEDs instead of only 7, you would save a lot of time when
writing out the code.

The turn variable

Notice within our sketch that we have used the set_to block at the end of each
repeat until block to change the turn variable by one for each turn of this loop.
This is to ensure that the loop only executes 7 times; one turn for each of our 7
LEDs (until turn = 8).

Notice also that we have used a further set_to block after each of the repeat until
block to reset the turn variable back to 1. If we did not reset this variable after the
repeat blocks then only the first repeat until loop would run, so the LEDs would
turn ON but not OFF, because the turn variable would remain at the value of 8.

Accessing items in the list

We mentioned that items in a list are counted from 1, which means that pin
number 2 in our led_pins list is the 1st element.
We count the elements inside our led_pins list like this:

Element 1 2 3 4 5 6 7
Variable (LED pin number) 2 3 4 7 11 12 13

Within each of the repeat until blocks our code sets a digital pin by using the turn
variable. On the first turn through this loop the turn variable is equal to 1, and so
the code sets the 1st element of the led_pins list to TRUE, which turns the LED
at pin 2 ON. On the second turn through this loop the turn variable is equal to 2,
and so the code sets the 2nd element of the led_pins list to TRUE, which turns the
LED at pin 3 ON. It does this until the last turn through this loop where the turn
variable is equal to 7, and so it finally sets the 7th element of the led_pins list to
TRUE, which turns the LED at pin 13 ON. After this the turn variable is equal to
8, so the loop ends.

Now try this

If you look at the stage window you will notice that the turn variable always
remains at 8. This is because the code is executing (running) so fast that the
changes cannot be seen.
Place a wait block at the end of each of the two repeat until blocks (Figure 58)
and observe what happens with the LEDs on the ARD2-INNOV8 and to the turn
variable in the Stage window.

Figure 56. The turn variable used as a counter to add 1 to itself each time

Figure 57. Using a set_to block to reset the turn variable

Table 2. Elements inside the led_pins list

What else can you do within this sketch
now that you understand how these
structures work?
Can you change the code so
the LEDs turn ON in order
from led1 up to led7, and
then turn OFF in order from
led7 down to led1, with a half
second delay between each
step?

What other light patterns can
you create?
Here is another pattern. Look
at the code and see if you can
work out what this sketch does.

Figure 58. Placing a wait block at
the base of the repeat block

Figure 59. A variation of the blink_list sketch

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

27

Content Index

Lesson 4 – Introducing chance

The learning in our lessons so far has been very valuable, however, everything
has been very predictable. When asking young people interested in programming
what kind of programmer they would like to be, most would say that they want to
be a games programmer. To be a good games programmer you need to understand
how to use chance in your programs; therefore you need to know how to generate
and use random numbers.
In this lesson you will learn how to generate and use random numbers within the
structures you used in the previous lessons, to create a very simple random game.

Adding a button

So far in our lessons we have only used outputs in the form of LEDs, however, in
this lesson we are going to learn how to use an input in the form of the pushbutton
attached to pin 8 on our ARD2-INNOV8 shield.
We will start by creating a very basic sketch which will just turn an LED ON
when the button is pressed (when the D8 button on the ARD2-INNOV8 is pressed
it pulls the pin to false / LOW).

The pseudo-code for this simple button sketch looks like this:

LED Button Sketch
WHILE
Read button status
		 IF button status is equal to LOW
			 SET led1 to TRUE
		 ELSE
			 SET led1 to FALSE
		 ENDIF
ENDWHILE

EXIT

If you look back at the pseudo-code in
Lesson 1, you will notice that the code
for this lesson is different because it
includes an IF and ELSE statement.
The IF/ELSE statement blocks are
control structures which allow the
program to test if a condition is TRUE
or FALSE, if a value is equal or not
equal, or if a value is greater or less than
a value being tested.

The text-based Arduino code for this sketch, looks like this:

int led1 = 2; // variable to hold the led1 pin
int button = 8; // variable to hold the button pin
bool buttonState = HIGH; // a variable to hold the
state of the button – HIGH or LOW, true or false
void setup(){
pinMode(led1, OUTPUT); // initialise led1 pin as an output
pinMode(button, INPUT); // initialise button1 as an input}
void loop() {
buttonState = digitalRead(button); // read the
state of button1 and store this value
// if the button state is reading low (pressed)
then set led1 to high, else, set led1 to low
if(buttonState == LOW){
 	 digitalWrite(led1, HIGH);}
else {

 	 digitalWrite(led1, LOW);}

}

Key words: Random, input/output, pseudo-code
Key focus: IF/ESLE blocks, using the random function,
using a button input, using simple data structures &
control structures

Figure 61. The push button on the ARD2-
INNOV8 which is connected to digital pin 8

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

28

Content Index

Create the sketch

For this sketch we need to create a new variable
for the button pin, as well as a variable to hold
our LED pin.

In this sketch we will be using the IF/ELSE control
block.

We will also need to create a third variable to hold the value of the state of our
button, so that we can check if it is TRUE or FALSE. We will call this variable
buttonState.

We will use this variable inside our forever loop to read the state of the button by
using a set_to_ block with a digital reading block dropped onto it (Figure 65).

We will need to drop the button variable on to this digital reading block so that
this set of blocks reads and stores the state of the button – TRUE or FALSE
(Figure 66).

Apply your knowledge

Apply your understanding of the code above by creating this simple LED Button
sketch.
Copy the blocks in Figure 67 and then run and test your code.
Debug your code if there is a problem, and modify the code to improve it.
Try changing the value of the led1 variable and observe what happens.

Figure 62. The top of the buttonBlink sketch

Figure 63. The IF/ELSE block

Figure 64. Creating a variable called buttonState

Figure 65. Placing a digital reading block inside a set_to block to read the button

Figure 66. Placing the button variable inside the digital reading block

Figure 67. Code blocks in the buttonBlink block

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

29

Content Index

The Chance sketch

Now that we understand how to use a button in our sketch, we can introduce the
element of chance by using the pick random function block. This block picks a
random number between the numbers specified on the block, for example:
This block will give us a number between 1 and 10 (inclusive):

This block will give us a number between 3 and 7 (inclusive):

Which means that it will only return the number 3, 4, 5, 6, or 7.

If you click on the block it will give you a random number in a speech bubble
beside the block. In Figure 69 the block has returned the number 4 when it was
clicked.
You will aslo need to create a new variable to store this returned value; call this
new variable random.
In this Chance sketch we will be using all 7 LEDs, and we want our randomly
chosen LED to stay ON after the button is pressed, so instead of using an IF/
ELSE block, we will use an IF block. We will use one of the repeat until blocks
that we constructed in Lesson 3 to turn all of the LEDs OFF just after the button
is pressed each time. This will ensure that only one randomly chosen LED will
light each time the button is pressed.
You will also notice that we have changed the blinkMore variable from 1 second
to 0.5 seconds. This is to provide just enough delay so that the button won’t
activate more than once when pressed.

Create the sketch

Construct this Chance sketch by copying the blocks in Figure 70.
Your system should light one of the 7 LEDs each time the button attached to
digital pin 8 is pressed
Run, test, and debug your code and system if necessary.

Now try this

Did your code work as expected?
If not, debug both your code and system to fix the issue.

Now that you understand how this works, try adjusting your code so that two or
more randomly chosen LEDs light each time the button is pressed.
Will there be any problems with this new system? Can you think of a way to fix
this problem?
Could you design the code so that the randomly chosen LED rapidly flashes on
and off until the button is pressed again? Might this cause a problem?

Figure 68. The pick random block – random number from 1 to 10

Figure 69. The pick random block – random number from 3 to 7

Figure 70. Blocks within the Chance sketch

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

30

Content Index

Lesson 5 – Dice

In the previous lesson we learned how a list could be used to store all of our LED
pin variables, and how we could easily access any of these variables by calling the
right element number inside our list using the item_of_ block.

We learned how the elements inside one of these lists is counted from 1 (most text
based languages count from zero), and we learned how we could use the repeat
until code block to perform repetitive tasks (iteration).
In this lesson we are going to combine these two programming tools to produce a
system which will represent our randomly chosen number in visual form.
A standard dice is one of the oldest and simplest random number generators, and
its number symbols are easily recognisable by people from all cultures (Correct
English for a singular dice is die, however, dice is commonly used for both
singular and plural these days).

We will be basing our system on the traditional dice, but to do this we will need
to understand how to use a two dimensional array, or what is also known as a
matrix. This may sound very difficult to understand, but you have actually already
used a 1 (row) by 7 (column) matrix in Lesson 4 in the form of a list. The simple
explanation is: a 2D array or matrix is just a list which contains other lists.
In text based programming and mathematics, a matrix can only be rectangular,
meaning that there can be no empty spaces or missing elements.

1
1 2
1 2 3

1 2 3
1 2 3
1 2 3

This is not a proper matrix
There are missing elements

This is a proper matrix
There are no missing elements

These rules however, are not followed by visual-block coding languages like
Snap4Arduino and others. These languages break the rules so that you can have
uneven matrices in your programs.
To make our dice system we will need to create one list for each of the numbers
on our dice; and we will need to store all of these lists inside a further list to make
all of the variables easy to access.
The light pattern which we need to make for each of our dice numbers looks like
this:

Key words: 2 dimensional array, Matrix, pattern
Key focus: pattern recognition, accessing data in a
matrix (array), finding the length of a list, working
with data structures & control structures

Figure 71. The item_of_ block

Table 4. Patterns for each of the 6 dice numbers

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

31

Content Index

If we put this data (using the pin numbers) into lists, then these lists will look like
this:
ONE = {7}
TWO = {3, 12}
THREE = {3, 7, 12}
FOUR = {2, 4, 11, 13}
FIVE = {2, 4, 7, 11, 13}
SIX = {2, 3, 4, 11, 12, 13}

You can see that these lists are not even in size; the first list has 1 element and
the last has 6, however, Snap4Arduino will allow us to add all of these lists into
another list to create our matrix.

Creating the Dice sketch

In this sketch we will use several of the blocks which we created in the previous
lesson.
To make the creation of this sketch easier, you can open the Chance sketch from
Lesson 4, and then choose Save As… from the File menu and save the sketch as
Dice.
For this sketch you will need to use the following variables which you created in
Lesson 4:

You will need to set each of your dice number variables up as a list to hold the
pattern for each number, for example, you will set the number 3 up like this by
dragging a list block on top of a set_to block:

The first 10 lines of your code should look like this:

To create the matrix, you will need to place all of your number lists into a the dice
variable list.
You do this exactly the same way that you created each of the lists for your
numbers, however, this time, instead of placing a number in each box of the list,
this time you drag each of the dice number variables onto it like this:

Most of the code in this sketch is the same as it was in the sketch for Lesson
4, such as the button code and the code to turn all of the LEDs off, however,
this time we are generating a random number from 1 to 6 instead of 1 to 7, and
because each of our dice number lists are different sizes, we need to find a way to
tell our program the size of each list is so that it runs through the correct number
of loops for each of these lists. This is where variables really come in handy.
We can use the length of_ block to find the length of the randomly chosen list,
and we can store this value in our num_length variable.
Don’t worry if you don’t understand this, because this is more advanced
programming. This type of programming is best learnt by doing, and by trial and
error, so if you don’t understand it now, keep practicing until you do.
Remember also that this lesson along with all of the other lessons in this book are
able to be viewed on the Firebugs Youtube channel.

Figure 74. The block setup for the variable three

Figure 72. Variables from Lesson 4
needed for the Dice sketch

Figure 73. New variables
needed for the Dice sketch

You will also need to create
these new variables:

Figure 75. The lists defined at the top of the Dice sketch

Figure 76. Dropping variables into the Dice list

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

32

Content Index

Build the blocks and test your sketch

Build all of the blocks for this Dice sketch by copying the code structure in
Figure 77.
This structure is a lot more complex than the other sketches you have created so
far, so pay careful attention to how each block group has been created.
Once you have completed the blocks, connect your Arduino, click on the When
clicked block and test your program.
With each push of the button, you should see the LEDs light in a pattern
representing the randomly chosen number.
If this is not happening, debug your code and test the system again.

Now try this

There are a number of things which can be added to this sketch to make the
function more interesting, and there are different ways that this Dice system can
be built.

Modify your code so that each time the button is pressed the LEDs flash from
LED 1 to LED 7 before the final dice number is shown.

Modify your code so that each time the button is pressed the LEDs flash a number
of random numbers before finally settling on one number.

We will learn how to use sound in the next lesson, however, if you wish to be
innovative and adventurous, try adding sound to your Dice system to see if you
can modify it to produce a number of beeps with each randomly chosen number.

Figure 77. Blocks within the Dice sketch

How would you modify
this sketch for someone

who is unable to see?

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

33

Content Index

Lesson 6 - Variable Tones

Producing sound

In the previous lessons we learned how to use an input in the form of the ARD2-
INNOV8’s push button, and outputs in the form of the ARD2-INNOV8’s
coloured LEDs.
In this lesson we are going to learn how to produce sound as an output for our
system.
The ARD2-INNOV8 shield has a built in buzzer attached to digital pin 9, which
produces quite good sound, however, because we are using Snap4Arduino we will
be unable to use this buzzer in this book. The code needed to use this buzzer is a
little too complex for the learning in this book, requiring additional software to be
loaded onto the Arduino board.

Luckily the Snap4Arduino IDE has a built in Sounds section which will allow
us to play sounds through our connected computer. The sounds produced by this
method are of high quality, and you can even create and use your own sound files
library.

A basic sound program

In this simple sketch, we are going to use some of the code from our previous
lessons. This sketch will be very similar to our button sketch in Lesson 4, where
we used a button to turn a LED ON. In this sketch, however, we want to produce
sound instead of light, so we will replace the code which lights the LED with code
that produces a sound. The block that we need for sound is the play note_for_
beats block, which can be found in the Sound library.

This block lets you choose the pitch and duration of the sound.
Most of the code in this sketch you have seen and used before in Lesson 4 and 5.
Create the button_sound sketch by copying the code blocks in Figure 79, and
then run and test it on your ARD2-INNOV8.

Test, Evaluate, Improve

What could be improved with this system?
What happens when you hold your finger down on the button? Could you improve
this?
Could you change the code so that the sound changed with each new button
press?
Can you change the code to make this system more interesting?

Key words: pitch, duration, digital, analog,
potentiometer
Key focus: using analog data, using the map function

Figure 78. The play note_for_ block

Figure 79. Code blocks in the button_sound sketch

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

34

Content Index

Adding variation control

Digital and Analog

So far we have only used digital inputs and outputs with our ARD2-INNOV8
shield, however, this shield with help from Arduino, is capable of reading analog
data, and outputting simulated analog data.
What is meant by analog data, and how does it differ from digital data?
Digital data has fixed values, and in the case of our Arduino board is a value of
either 5 volts or 0 volts (HIGH or LOW, TRUE or FALSE).
Analog data does not have fixed values. It can be anywhere on a sliding scale. In
the case of our Arduino board this analog data can be anywhere from 5 volts to 0
volts, meaning it could be 5, 4.5, 3.298, 2.004, 1, or 0 volts.
Data in the real world is analog data: the sun shining through the clouds, the
sound of a bird singing, the amount of rain falling on a leaf.
The Arduino can convert this analog data to digital data by using an analog-
digital-converter (ADC), which converts the input voltages from sensors to a
number between 0 and 1023.
We can use this process to help us control the pitch of the sound that is played
each time our button is pressed.
In this sketch we will need to create (declare) the following variables, and define
them with pin numbers at the top of our code:

Two of these variables: button and buttonState, you have used before, but the
third: pot_pin, is new. This pot_pin variable will be used to help read the value on
the potentiometer (blue knob) which is attached to pin A0 on the ARD2-INNOV8
shield. The potentiometer is like a volume control knob on a sound system,
however, in this sketch we are using it more like a variable switch to change the
pitch of our sounds.

In this sketch we will need to change the value of the data that is collected from
this potentiometer, because the values coming from the potentiometer are from 0
to 1023, but the play note_for_beats function block works best with values from
60 to 100.
For this we will need to use the map function block.
You will need to import this block into your libraries from the ARD2-INNOV8-
SNAP folder which you have extracted to your computer.
To do this choose Import from the File menu.

Navigate to the map.xml file inside your ARD2-INNOV8-SNAP folder, and open
it.

You should now be able to see the map from_to_ block within the Operators
library.

Figure 80. Variables defined at the top of the variable_sound_button sketch

Figure 81. The potentiometer on the ARD2-INNOV8

Figure 82. Import blocks via the File menu

Figure 83. Navigate to the folder containing the map block

Figure 84. The map block

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

35

Content Index

We will use this block within a set (read_pot) to_ block to set the read_pot
variable to the value of our potentiometer, and we will use the round function
block to round off the value which is being read. The round function block will
give us the value 67 instead of 66.67899, or the value of 100 instead of 99.98777.

Build and test the variable_sound_button sketch by copying the code blocks in
Figure 86, and then run this on your board. For this sketch to work, you will need
to turn the knob on the potentiometer and also press the button.

Now try this

The potentiometer on the ARD2-INNOV8 shield is not the only component
capable of reading analog information. There is also the light sensor (LDR)
and temperature sensor. All of the pins on the analog side of the shield are also
capable of reading analog information.

Make sure than all of the analog pin jumpers are set to the internal position (INT)
[see Figure 87], then change the value of the pot_pin variable from 0 to 1 (Figure
88) to use the LDR instead of the potentiometer.

Now instead of reading the value across the potentiometer, you are reading the
value of light hitting the light sensor (LDR) attached to pin A1.
Shine a light over this sensor and push the button to observe what happens.
Try also to create a melody using a number of sounds rather than just one, and use
either the potentiometer or LDR to change this group of sounds so that the whole
melody changes in pitch.

Figure 85. Setting the read_pot variable to a number between 60 and 100 by using the
map and round blocks

Figure 86. Blocks within the variable_sound_button sketch

Figure 87. The ARD2-INNOV8 analog pins and pin jumpers (set to INT)

Figure 88. Changing the value of pot_pin from 0 to 1 reads the LDR instead of the
potentiometer

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

36

Content Index

Lesson 7 – Banana Keyboard

Now that we know how to use our code to make sounds, we can make something
that is a lot of fun and a little unusual.
In Lesson 4, 5, and 6 we used a push button to activate part of our code, however,
there is only one button which we can use on our ARD2-INNOV8, so we will not
be able to use buttons to make a musical keyboard.
Luckily we don’t need any buttons for this because the ARD2-INNOV8 has been
fitted with special resistors attached to each of the anolog pins from A1 to A5.
These special resistors are called pullup resistors. We have already used one of
these which is attached to our push button, however, the pullup resistors attached
to the anaolg pins are much weaker.
These weak pullup resistors mean that we can use anything that will conduct a
small amount of electricity to form part of a switch. The other part of the switch
will be our finger, and so we will be using every day bananas as our piano keys.
The weak pullup resistors will pull up each of our analog pins to HIGH (TRUE)
when the bananas are not being touched. Without this pullup the sounds would be
switched ON and OFF randomly when the bananas are not being touched.

Key words: pullup-resistor, resistance, frequency,
threshold
Key focus: using control structures, working with
thresholds

Figure 89. The setup for the banana_keys sketch

A person’s resistance can be as high
as 100,000 ohms or as low as 1,000
ohms. Wet or dry skin makes a big
difference. The pullup-resistors in
this circuit are 1 million ohms, so
the electric current will choose to

travel through the person and banana
instead of the resistor.

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

37

Content Index

Creating the code for the banana_keys sketch

To create the banana_keys sketch we need to create a list and five variables.
The notes list will hold all of the sound values which will be played via the play
note_for_beats block when one of our bananas is touched.
The five variables: read_1, read_2, read_3, read_4, read_5, will hold the values
being read by each of our 5 anaolg pins. When these values drop below a certain
point the code will react and a note will play.

Our notes list can be set up to contain any notes that you
wish, however, you will need to include one note for each
of our five banana keys.
The exact values for each of the scaled musical octave can
be seen in Table 5, however, we have adjusted our notes
slightly to be like this (Figure 91):

You can download a free frequency meter for your smartphone or tablet and test
to see if the frequencies played by Snap4Arduino match the ones in this table. You
will find one of these apps by searching “frequency meter” in your phone’s app
store.

Creating the banana_keys sketch

In this banana_keys sketch we will be using some of the control structures that we
have used in the previous lessons, and we will be using a list data structure to hold
the values for our notes.
We will be using the forever loop block, as we have done for all of our sketches,
and we will need to use an IF block to control what happens when each of the
banana keys is touched.
Before we set up the control blocks in our sketch, we need to set up our read
variables to ensure that they are reading the data coming in to each of our analog
pins. We do this at the top of our forever loop, like this (Figure 92):

After these variables are set up to read the analog data coming in, we set up our
control structures. This is done by using an IF block which tests against a specific
threshold value. For each of our banana keys we need to set the code blocks up
like this (Figure 93):

Here we see that if the value of read_1 drops below the threshold value of 800 the
first item in the notes list is played for half a beat. We set up our control blocks
like this for each of our five analog pins.
The value of 800 may need to be adjusted to suit the resistance of the person
playing the banana keyboard. Electricity flows differently through people
depending on their body size and type. Also, having either moist or dry hands can
affect the way electricity flows through the body. If you find that your system is
not behaving as expected, change the value in this block from 800 to whatever
works for you. Watch the video for this lesson on the Firebugs Youtube channel to
see how this system should behave.

Figure 90. Variables
used for the banana_
keys sketch

Figure 91. Musical note values within the notes list

Table 5. The musical notes with MIDI number and frequency

Figure 92. Setting of the read variable at the top of the forever loop

Figure 93. One of the IF control blocks in the banana_keys sketch

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

38

Content Index

Test, Evaluate, Improve

Build the banana_keys sketch by copying the code blocks in Figure 94.
Before you run the sketch, make sure that you have your ARD2-INNOV8 set up
the same way as shown in Figure 89.
Use 5 socket-to-pin jumper wires to connect the bananas to the analog pins on
the analog side of your ARD2-INNOV8 (A1, A2, A3, A4, A5), and a further
jumper wire for the ground wire (GND). Use the socket end to plug into the side
connectors on the shield, and the pin end to pierce the skin of the bananas.
If all of these things have been done, connect your Arduino, then run and test the
sketch.
You should now be able to play a nice tune on your bananas.
Debug and adjust the code to ensure that your system is functioning as expected.
If you can see an area that needs improvement, try your solution to see if it works.

Now try this

This banana_keys sketch is fairly simple, because it only uses five IF control
blocks, however, there is a way to make it even simpler and more elegant, by
using the one of the repeat control structure blocks that we have used in some of
the previous lessons. Try to adjust your code to reduce the number of IF blocks
by adding a repeat block. A solution for this can be found on the Firebugs website
under Snap4Arduino, and the code for this is in your ARD2-INNOV8-SNAP
folder.

Using your knowledge from the previous lessons:
•	 Create a system which produces both a sound and the lighting of one of

the coloured LEDs on the ARD2-INNOV8 each time one of the bananas is
touched.

•	 Create a system where the sounds for this banana keyboard can be adjusted in
pitch by either turning the potentiometer of shining a light on the LDR.

If you think up a unique solution, post it on the Firebugs and Wiltronics Facebook
page; you could win yourself a small prize for your effort.
Solutions for these challenges can be found on the Firebugs website under
Snap4Arduino.

Figure 94. Blocks within
the banana_keys sketch

How could you adjust
this sketch for a person

who is unable to hear, so
that they are able to ‘see’

the sounds?

http://www.firebugs.com.au/
https://www.facebook.com/firebugsinnov8ion/
https://www.facebook.com/wiltronics/
http://www.firebugs.com.au/

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

39

Content Index

Lesson 8 - Temperature Sensor

We have learnt how to write some complex code so far, and we had a bit of fun
applying this in Lesson 7 with our banana keyboard.
In this lesson we are going to make something which is a little more serious, and a
system which is very useful in everyday life.
We are going to create a sketch for a system which will use the temperature sensor
on our ARD2-INNOV8 to indicate a temperature range to us.
To do this we will be using the TMP36 temperature sensor on our ARD2-
INNOV8 along with the coloured LEDs.
We will be making a temperature sensor which reads temperatures in degrees
Celsius, however, this is very easy to change if you live in a country which uses
Fahrenheit.
The system that we create in this lesson will be able to work even when a person
is not present; meaning that the system will continue to read the temperature when
it is on its own. We call these automatic systems closed-loop systems, and systems
which need a human controller are called open-loop systems.

Creating the temperature sketch

Firstly we need to declare five variables: led_cold, led_warm, led_hot, temp_read,
and temp_C (change this to temp_F for Fahrenheit) [Figure 95].

The LED variables get defined at the top of our code, using the relevant pin
numbers as values.

We once again use the forever loop like we have done in all of our lessons, but
this time we are going to make use of two IF/ELSE control blocks, by nesting
one inside the other. Nesting is a very common practice in computer programming
that allows you to have precise control over how your code flows.
Above these IF/ELSE blocks we first need to make our program read, convert,
and store the data coming into the temperature sensor, like this:

Key words: degrees Celsius/Fahrenheit, closed-loop/
open-loop system, nesting
Key focus: using nested code, reading analog data, using
thresholds

Figure 95. Variables used in the
temperature sketch

Table 6. ARD2-INNOV8 LED pin
numbers and colours

Figure 96. The LED variables at the
top of the temperature sketch

Figure 97. Reading the
temperature sensor and
converting the data

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

40

Content Index

The first block at the top of the forever loop reads the data from the temperature
sensor on analog pin 2, then the next block converts this data to a voltage between
0 volts and 5 volts, the third block converts this voltage to a value in degrees C,
and the final block converts the Celsius data to Fahrenheit (Figure 97).
The control section of this sketch has two IF/ELSE blocks (one inside the other)
giving us the three paths that our program can take. Two of these options contain
a threshold value to be tested, and the final ELSE statement within the first ELSE
statement gives the default option when none of the other conditions are met.

This is what this looks like written in pseudo-code:

Temperature Sketch
WHILE
Read temperature
	 IF temperature greater than 28
		 SET led_hot to TRUE
		 SET led_warm to FALSE
		 SET led_cold to FALSE
	 ELSE
		 IF temperature less than 25
			 SET led_hot to FALSE
			 SET led_warm to FALSE
			 SET led_cold to TRUE
		 ELSE
			 SET led_hot to FALSE
			 SET led_warm to TRUE
			 SET led_cold to FALSE
		 ENDIF
	 ENDIF
ENDWHILE

EXIT

Test, Evaluate, Improve

Build the temperature sketch by copying the blocks in Figure 98. Run the sketch,
then hold your finger on the temperature sensor and watch the LEDs. The BLUE
LED should be lit first, and then as you keep your finger on the temperature
sensor it should change from BLUE to YELLOW to RED.
You may need to adjust the threshold values in the IF/ELSE blocks to suit the
temperature conditions of your local environment. The temperature thresholds
which we have used here should work when you hold your finger on the
temperature sensor.

You can watch the temperature variables change within the Stage window. This is
helpful if you need to adjust the threshold values (Figure 99).

Now try this

In the real world this type of system could be used to do a number of useful
things, such as turn on a fan, or open a window when the temperature becomes
too hot. This type of system is often found in agriculture, and in particular they
are used in greenhouses to help control temperature.
Use the skills and knowledge gained in this lesson and previous lessons to create
a useful or interesting system. You could introduce sounds and other variables to
create interesting outputs for your system. You could use your understanding of
how the potentiometer works to create a system which has a variable threshold.
Work together with your classmates to brainstorm, plan, and design a system
which uses sensors such as the temperature sensor and LDR to read data, and then
provides outputs in the form of light and sound.

Figure 99. You can watch the
temperature variables change in
the Stage window

Figure 98. The temperature sketch

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

41

Content Index

Lesson 9 - Traffic lights

This lesson is perhaps the most challenging lesson so far. The idea for this sketch
is very simple, however, the second part of this lesson will definitely test your
thinking and programming skills.
This lesson is separated into two parts: Part A is the creation of a single traffic
light program, which is quite easy, and Part B, which is the creation of a double
traffic light program.
The programming of Part B will require you to design the flow of your program
so that the two traffic lights work in perfect synchronisation.
The main learning focus in this lesson is how programs can be simplified with the
creation of functions.
Programmers create functions within their programs to act as containers for parts
of their code, so it can be access again and again by other parts of the program.
Creating functions means that you can hide all of the complicated parts of your
program in another section (or even in a separate file), so that your code looks
neater and is easier to follow.
Two programming terms that are used to describe this process are abstraction and
encapsulation.

We use abstraction when we eliminate any unnecessary or repetitive code and
place code parts into functions so that the working details are hidden away. We
are using encapsulation when we create functions because we are enclosing parts
of the program within a container so that this code is protected and cannot be
changed by other parts of the program when the code is run.

Creating your own function blocks

When creating complicated programs the code can become complex and messy.
In these cases programmers create functions to hold and protect parts of the
program, and to make the code easy to follow.
Snap4Arduino also allows you to create your own function blocks. Just like with
text-based code, it is easy to create a function block with Snap4Arduino code,
because it works much the same as building regular code blocks.
In this lesson we will be creating two functions to create our traffic light program.

Building a basic function block - example

Before we begin our traffic light sketch, we will create a simple function as an
example so that you can understand how this process works.
Within the Other blocks library, you will find a button labelled Make a block
(Figure 100).

Clicking on this button brings up the Make a block
window, which will let you choose a library for
your block, and the type of block. Here we will
choose the Arduino library, and Command block,
because we want this function block to perform a
command with the Arduino board. We will name
this block Blink and we will select the for all
sprites option (Figure 101) [this means we can
use it with any attached board].

Key words: synchronisation, abstraction,
encapsulation, local/global variables, parameters &
arguments, algorithm, sequence
Key focus: defining & calling functions, pattern
recognition, algorithm design, computational thinking

Figure 100. The Make a block
button within the Other block
library

Figure 101. Creating a function
block in the Make a block window

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

42

Content Index

Next we are taken to the Block Editor, where we can begin to build our function
block (Figure 102).

Local Variables Vs Global Variables

In our function blocks we will be using local variables. These are variables which
can only be used inside their function, and therefore cannot be used by other parts
of the program. In all of the lessons in this book, you have been using global
variables. Global variables are variables which can be used by all parts of the
program, and therefore they must be declared (created) at the top section of the
code.
We can build our function blocks as we have done in previous lessons, and we
will be able to create and access local variables within these blocks which will
allow us to use these blocks in other sketches; We can even share them for use
with other programmers (this will make sense when you start building). Here we
have recreated our original Blink sketch from Lesson 1 as a new function block
(Figure 103). Notice that we have used two local variables as parameters to this
function. This means that in our top block we have included the variables led and
pause, and we have used these variables within the functions other blocks.
A parameter to a function is a variable which tells the function what input to
expect. You can set up a function with as many parameters as you need.

Local variable inputs can be created by clicking on the plus + signs next to the
function name on the top block (Figure 104).

These local variables can then be dragged from the top block to places where they
are needed within the function code (Figure 105).

This process declares and defines the function so your block will appear within
the Arduino blocks library, but the function will only be run if it is called within a
control block in the programming window. To do this you simply drag the block
into the programming window as you have done with all other blocks, like this
(Figure 106).

Figure 102. The Block Editor window

Figure 103. Our Blink function created in the block editor

Figure 104. Creating parameters
(inputs) for the function

Figure 105. Local variables are dragged
into their required positions

Defining a function
means that you create the
code to allow the function
to be used in your sketch.

Calling a function is
when you actually use
the function in your

sketch.

Figure 106. Calling the Blink
function within the forever loop with
the arguments 13 and 1

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

43

Content Index

You will need to give your new function the arguments that it expects. An
argument to a function is the input which it expects to use. Your Blink function
expects two arguments: the pin number and pause amount. This is because we set
up this function with these two input parameters.
This sketch will blink the LED on pin 13 at one second intervals.
You can also use your own variables as arguments, and you can use this block
with any of the LED pins and as often as you need (Figure 107).

Build this example sketch and experiment by calling it with different arguments
like the example in Figure 107.

Creating the single traffic light sketch

The LEDs on the ARD2-INNOV8 shield are set up in a way which provides two
traffic light patterns.

First we are going to make a single traffic light program.
When a program is written to solve a problem or provide a solution, it is called an
algorithm.
An algorithm is a set of instructions which a computer follows.
We have been using algorithms to solve problems in each of our lessons so far,
and in this lesson you will have the chance to create your own algorithm for the
double traffic light sketch.
For our single traffic light sketch we will create two special function blocks to
contain our main algorithms.
The algorithms for this sketch are very simple and easy to understand.
These functions will control the light sequence for our single traffic light.
The pattern we need is this:

The traffic light
starts on GREEN.
There is a delay
after the button is
pressed.

The lights switch
to YELLOW for a
short time.

The lights switch to
RED for an amount
of time.

The lights switch
back to GREEN.

Figure 107. An example of how the Blink function can be called

Figure 108. Traffic Light LEDs on
the ARD2-INNOV8

Table 7. The single traffic light sequence

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

44

Content Index

Creating the function blocks

We start by making the function block which will set our traffic light to GO
(green).

The algorithm for our traffic_go function block is very simple; it only contains
two blocks and has only two local variables as paramter inputs (Figure 110).
This function block will set the GREEN LED to TRUE and the RED LED to
FALSE.

Create your traffic_go function block by copying the blocks in Figure 110.

Next we need to create a function block to make the traffic light run through the
STOP sequence.

The traffic_stop function block contains 8 blocks and is responsible for making
the traffic light run through the STOP sequence. It uses three local variables
as inputs, because it needs to control all three of the lights: RED, YELLOW,
GREEN.
The algorithm in the traffic_stop function block is still very simple. This function
block also calls (uses) the traffic_go function block as its last block to set the
traffic light back to GREEN.
The algorithm in this function block will wait 2 seconds, then switch the lights
from GREEN to YELLOW, wait a further second, then switch the lights from
YELLOW to RED, then wait a further 4 seconds before calling the traffic_go
function, which switches the lights from RED to GREEN.

Create your traffic_stop function block by copying the blocks in Figure 112.
After completing and saving these function blocks, you should be able to see them
appear within the Arduino blocks library (Figure 113).

Figure 109. Creating the
traffic_go function block

Figure 111. Creating the
traffic_stop function block

Figure 110. The
traffic_go function
block

Figure 112. The traffic_stop function block

Figure 113. The traffic_stop and
traffic_go function blocks in the
Arduino blocks library.

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

45

Content Index

Creating the traffic_light1 sketch

Now that we have created our function blocks, we can begin to build the blocks
for the main part of our sketch.
So far we have used local variables within our function blocks, but we now need
to create the global variables which will be used throughout our sketch and as
arguments (inputs) to our function blocks.
We start by declaring the three global variables that will hold our LED pins for the
three traffic light colours, and we also need a global variable for our button, and a
further one to hold the state of the button.
Declare each of these variables as you have done for all of the previous lessons
(Figure 114).

You will define these variables at the top of your sketch like this (Figure 115):

The code in the main part of the sketch is quite simple: it first runs the traffic_go
function to set the lights to GREEN, and then continually checks to see if the
button has been pressed.
If the button has been pressed it runs the traffic_stop function to run the lights
through the STOP sequence and then back to GO.
Build your traffic_light1 sketch by copying the blocks in Figure 116.
Then connect your board to run and test the sketch.

Test, Evaluate, Improve

Did your traffic light perform as expected?
If so, well done! If not, inspect your code to see if you can debug the issue. You
may have used the wrong pin number/s, or you may have missed a block or
variable somewhere. Debug your sketch and then run it again. Remember, if you
are having trouble understanding this sketch, you can watch the video tutorial for
this lesson on the Firebugs Youtube channel.
You may need to make improvements to this sketch to get it running to your
preferences, such as adjusting the timings inside the traffic_stop function block.

Now try this

The single traffic light was the easiest of the traffic light sketches. The next sketch
traffic_light2 involves using 6 LEDS to run 2 traffic lights through a sequence.
Here we will give you an opportunity to work this sketch out on your own, but we
will give you some hints, and there is a solution in the back of this book, as well
as a video tutorial on the Firebugs Youtube channel in case you get stuck.

Figure 114. The global
variables needed for the
traffic_light1 sketch

Figure 115. Defining the
pin numbers for the global
variables

Figure 116. The traffic_light1 sketch

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

46

Content Index

Creating the double traffic light

The sequence for the double traffic light is given in Table 8, however, you should
use your programming pattern recognition skills to try to work the double traffic
light sequence out yourself before looking at this solution.
The sequence that you will need to follow for your algorithms in this sketch is:

First traffic light 1 is
GREEN, and traffic light
2 is RED. There is a short
delay after the button is
pressed.

Traffic light 1 changes to
YELLOW, whilst traffic
light 2 stays RED. There is a
short delay.

Traffic light 1 changes to
RED, and traffic light 2
changes to GREEN. There is
a longer delay.

Traffic light 1 stays on RED,
whilst traffic light 2 changes
to YELLOW. There is a
short delay.

Finally, traffic light 1 chang-
es back to GREEN, and
traffic light 2 changes back
to RED.

Instead of starting from scratch with this sketch, you
can choose Save As from the File menu to save your
traffic_light1 sketch as traffic_light2. This way you
can simply adjust the part of code that needs to be
changed.

To build the double traffic light sketch you will need to once again create two
function blocks: traffic_go and traffic_stop; but this time the algorithms inside
these functions will be more complicated.
You will need to declare the following global variables and define them at the top
of your code:

A small hint for you

The tops of the function blocks in the solution are set up like this:

Now test your programming skills

Set up your function blocks for the double traffic light sketch traffic_light2 to
see if you can figure out the algorithms for this sketch. Remember that there is a
solution at the end of this book, and there is also a video tutorial on the Firebugs
Youtube channel to help you if you get stuck.
Share you solution with others, and discuss and compare how you overcame
programming challenges. You can also share your solution for this challenge on
the Firebugs & Wiltronics websites or Facebook pages.
Happy prototyping!

Table 8. The sequence for the double traffic light

Figure 117. Saving traffic_light1 as traffic_light2

Figure 118. The global
variables needed for the
traffic_light2 sketch

Figure 119. The top block
inside the traffic_go function
block

Figure 120. The top block inside the traffic_stop function block

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.facebook.com/firebugsinnov8ion/
https://www.facebook.com/wiltronics/

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

47

Content Index

Lesson 10 – Using servo motors

So far in our lessons in this book we have used the LEDs and buzzer on the
ARD2-INNOV8 as output devices in our sketches. In this lesson we are going to
learn how to use a special motor called a servo motor as an output device, which
will allow us to add movement to our systems.
Servo motors have their own inbuilt sensor which feeds back the position of the
servo’s arm, and allows it to keep very precise positions.
Servo motors are the motors which are used to control the movement of wing
flaps on remote controlled aeroplanes, the ailerons of RC helicopter blades, and
the steering movement on RC cars. They are also used in many other systems, and
larger servo motors are used for the movement of some large industrial robots.
To make a servo motor move using a digital controller like our Arduino micro-
controller, you need to send it a signal in the form of a square wave. The servo
will move to a position between 0° and 180° depending of the width of the pulse
in this square wave. Figure 121 shows how this works. If the pulse width is 1
millisecond the servo will move to 0°, if the pulse width is 1.5 milliseconds the
servo will move to 90°, and if the pulse width is 2 milliseconds the servo will
move to 180°.

You do not need to understand how a servo works or remember the width of
the pulse signal, however, you do need to know that there are only 6 pins on the
Arduino micro-controller which we can use to control our servo motor, these are
digital pins 3, 5, 6, 9, 10, and 11 (on the ARD2-INNOV8 pins 5, 6, 9, &10).
These special pins are known as PWM pins, which stands for pulse width
modulation. On the Arduino board these pins are marked with the tilde symbol ~.
On the ARD2-INNOV8 shield you can attach up to 4 servo motors using the
linker connectors on the digital side of the board (Figure 122).

If you want to run 4 servo motors at
the same time, you can do this on the
ARD2-INNOV8 shield, however, in
this case you should power the servos
via the +6V power terminal (see
the video for how to do this on the
Firebugs Youtube channel).

Key words: square wave, PWM, Cartesian plane,
horizontal/vertical axis
Key focus: using a servo motor, using the map function

Figure 121. The pulse
width sets the position of
the servo motor

Figure 122. The ARD2-INNOV8
can run up to 4 servo motors

Difficulty Level

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

48

Content Index

Controling the position of a servo motor
with a potentiometer

For this lesson you will need one small servo
motor attached to your ARD2-INNOV8

Connect the three wire socket of your servo motor to the linker connector at
digital pin 5 on your ARD2-INNOV8 shield as has been done in Figure 123,
making sure that the brown wire is connected to the GND pin, and the yellow wire
is connected to the D5 pin.

In this lesson we will only be controlling the position of a single servo, however,
you can easily extend this lesson and the final project in this book to run more
than one servo motor.
Remember back to Lesson 6 where we used the potentiometer on the ARD2-
INNOV8 to change the pitch of the sounds made by our system; this time we are
going to use this potentiometer to control the position of our servo motor.
For this sketch we will once again need to use the map from_to_ block to convert
our potentiometer data to data which the servo can read.

Creating the pot_servo sketch

This is a very simple sketch compared to the previous few lessons, however, it is
an important lesson which will help you to create interesting prototyping ideas.
We first need to declare 3 global variables, and define two of them at the top of
our sketch: One for our servo motor, one for our potentiometer, and one to hold
the data coming from the potentiometer.

We construct our code blocks so that our read_pot variable is reading and storing
the data coming in from the potentiometer on pin 0. We then map this value
from a value between 0 and 1023, to a value between 0 and 180. The 0 to 180
is a measurement in degrees. These values are converted by the Arduino micro-
controller to a signal pulse which the servo can read.

Build this sketch by copying the blocks in Figure 125. You may need to reload
the map block from your ARD2-INNOV8-SNAP folder (see Lesson 6).
Connect your board ready to run, but before you do, see if you can predict what
this sketch is going to do.
Run your code and turn the knob on the potentiometer to see what happens.

Figure 123. Servo connection for the pot_servo sketch

Figure 124. Global variables needed for the pot_servo sketch

Figure 125. Code blocks in the pot_servo sketch

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

49

Content Index

Controlling a servo motor with a mouse

Did you predict that when you turned the knob on the potentiometer that the arm
on the servo would also turn in the same direction? This type of system allows
you to control movement from a distance, and it is exactly the same principle as a
robotic arm or giant crane.

In this sketch we are going to use this same principle, but we are now going to use
our computer mouse as the control. Snap4Arduino has a code blocks called mouse
x and mouse y. These blocks can be found within the Sensing blocks library. The
X and Y refers to axis on the Cartesian plane. The X being the horizontal axis and
the Y being the vertical axis. We can use these blocks in our sketch to control the
movement of our servo motor.
In this sketch we will use the mouse x block to control the movement of a single
servo motor, however, after this is done, you will be given the challenge to add a
second servo motor and control its movement using the mouse y block.

The code in this sketch is much the same as the code in the previous sketch, but
this time we are going to use 3 global variables: servo1 – for our servo motor,
read_mouseX – to hold the data coming from the mouse position, and convert_
mouseX – to hold the converted data which has been mapped using our map
from_to_ block (Figure 126).

We only need to define one of these variables at the top of our code, and the rest
of the sketch is very much the same as our pot_servo sketch.

Build and test the sketch

Build this sketch by copying the blocks in Figure127, and then connect your
board and run the sketch.
Move your mouse across your computer screen and you should see the servo
motor following the direction of your mouse.
You may need to adjust the parameters in the first half of the map block to suit
your screen; this is why we have used the read_mouseX variable so that you
can see the value of the data coming from the mouse position, and the convert_
mouseX variable so that you can see what position the servo should be.
You can view the values of these variables within the Stage area, on the the top
right of the Snap4Arduino IDE (Figure 128).

Now try this

In the mouse_servo sketch we used only one servo controlled by our mouse on
the X axis, however, we can move our mouse along both the X and Y axes, which
means that we are able to control 2 servo motors (one for each axis).
Adjust this sketch so that you can control two servo motors: one with the mouseX
block, and one with the mouseY block (you can use digital pin 6 to connect your
second servo motor).
Once you have built this sketch, think up an application that uses two servo
motors and build yourself a prototype to test. This could be a robotic arm, crane,
or even a small CNC machine.
You can use cardboard, wood, plastic, glue and tape to build your prototype. The
next lesson is an extended project which shows you how to combine inputs and
outputs from the ARD2-INNOV8 to build a simple prototype.

Figure 126. Global
variables needed for the
mouse_servo sketch

Figure 127. Code blocks in the mouse_servo sketch

Figure 128. The Stage area lets you view the data coming into your variables

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

50

Content Index

Final Challenge – Putting it all together

In most of the lessons in this book we have built projects which used the on-board
components on the ARD2-INNOV8 shield. In this project we are going to build
a working prototype which gives you experience putting components together to
connect and use with your ARD2-INNOV8.
So far we have built projects that output light, sound, and movement; so in this
project we are going to design and build a prototype which combines those three
types of outputs.
If you think about systems that output light, sound, and movement, there are many
possibilities that we could use for our design, but one of the easiest and most
fun to build is railway crossing gates. Railway crossing gates output light in the
form of the red flashing lights, sound in the form of the dinging bell sounds, and
movement in the form of the boom arm moving down and up; so this is a perfect
system for our project.

Building the prototype

Materials

For this project, you will need:

•	 Some cardboard or thin plywood
•	 A 1 cm by 1 cm piece of wood 30 cm long or a rolled up piece of card or paper

30 cm long
•	 Black paint
•	 Scissors and glue (PVA wood glue and Superglue)
•	 Two red 5mm LEDs
•	 Two 270Ω resistors (anything between 220 and 330 will do)
•	 Four long breadboard jumper wires with a socket end and one end stripped (2

Red and 2 Black)
•	 Some solder and a soldering iron (this part will need to be done by an adult)
•	 Some electrical tape or heat-shrink tube
•	 A mini or micro servo motor with its arm attachment
•	 Small blocks of wood or cardboard to use as a base and spacer for the servo
•	 Resources from the ARD2-INNOV8-SNAP folder

Key words: prototype, components, anode/cathode,
soldering
Key focus: designing, prototyping, constructing, testing,
evaluating

Figure 129. Railway crossing signal gates

Difficulty Level

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

51

Content Index

Creating the prototype parts

In your ARD2-INNOV8-SNAP folder you should find an A4 template sheet called
TrainCrossing.pdf, which shows the layout of all of the bits that you need for this
project. You can use any materials you wish to build your prototype, however,
cardboard or wood may work best and be easier to build with.
Cut out all of the pieces you need to build the prototype according to the
instructions on the template sheet in your ARD2-INNOV8-SNAP folder, then
glue these pieces together and leave them to dry ready for painting. You will find
a video tutorial on how to put this prototype together on the Firebugs Youtube
channel.
After painting all of your pieces attach the labels and artwork with glue to the
appropriate parts of your model (see the instruction sheet for this).
Finally attach the signal pole to the base with glue, then fix the servo in position
with a small amount of Superglue and also glue the boom to the servo arm (you
may need to adjust the position of this later, so make sure that the servo arm is not
screwed onto the servo).

Attaching the LEDs

 Important safety information This part will need to be done by an
adult or a person who has had experience using a soldering iron.

Study your LEDs and observe which legs are the Anode (positive) and which
legs are the Cathode (negative). You will need to know this when you attach the
jumper wires to these legs. The Anode (positive) leg is usually longer than the
Cathode (negative) leg.
Ask an adult to solder the Anode (positive) leg of each of your LEDs to one of the
resistor legs, and then solder the Cathode (negative) leg of the LED to the stripped
end of one of the black jumper wires. Solder the other leg of the resistor to the
stripped end of one of the red jumper wires (use crocodile clips as an alternative).
Repeat these steps for the 2nd LED.The finished result should look like this:

Once you have done this, insulate your solder joins with electrical tape or heat-
shrink. These LEDs should fit neatly into the circular disks which you should
have glued either side of your signal pole (see Figure 132).

The jumper wires will be plugged in to the linker connectors on the digital side of
your ARD2-INNOV8 shield.

Connecting your model to your ARD2-INNOV8

Connecting your model to your ARD2-INNOV8 shield is easy.
Plug the three wire socket from your servo motor into the linker connecter at
digital pin 5, just like you did in lesson 10.
Next plug the red jumper wire from one of LEDs into the D6 pin, and the black
jumper wire from this LED to the GND pin which is near the D6 pin.
Repeat these steps with the second LED, but plug it into the D10 pin (red) and
GND pin (black).
If you have connected these wires correctly then your ARD2-INNOV8 should
look the same as the image in Figure 131. If your setup looks good, then you are
all set to start programming your prototype.

Figure 131. Attaching the LED and
Servo wires to the ARD2- INNOV8

Figure 132. The setup for the
Train_crossing sketch

Figure 130. The soldered LEDs with a resistor on one leg

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

52

Content Index

Programming the train crossing prototype

You should now be at a stage with your programming where you understand the
process and can begin to do things independently; therefore there is no need to
fully explain each part of the process for how to build the code blocks for your
train crossing system.

For this sketch you will need to declare the following global variables (Figure
133). There is a variable for each of the two LEDs, one for the servo, one to hold
the position for the servo, one for the button, one to hold the state of the button,
and we are once again using our blinkMore variable to hold the amount of delay
that we want to feed into out wait block:

We have also created two function blocks for this sketch: One to contain the
algorithm for when the boom gate comes down, and the other to contain the
algorithm for when the boom gate goes up.

We have designed this system to start as soon as the button is pressed, however,
you could easily adapt this system to be initiated when a sensor is activated.
An ultrasonic sensor module would work very well in this case. Look out for
extensions to this project on the Firebugs Youtube channel.

The sequence that we want our system to follow is this:

When the button is pressed:
Lower the boom gate, flash the LEDs, and sound the bell until the gate is
down.

Then:
Keep the boom gate in the down position and continue to flash the LEDs and
sound the bell for a specific length of time.

Then:
Raise the boom gate and flash the LEDs until the gate is fully up (we don’t
need the bell sound here).

Because we have no sensors that will tell us if the boom gate is up or down, we
need to use another method to ensure that our system knows when to bring the
gate back up. In this case we can use repeat blocks to move the servo motor a
small amount each time for a certain number of loops.

The two images on the following page show how to set up your blocks for the
gates_closed and gates_open functions (Figure 136 & Figure 137).
Create these functions and copy these blocks exactly using the process that was
shown to you in Lesson 9.

You will need to import the bell sound to use in the gates_closed funtion.
To import this sound into Snap4Arduino, simply drag it into the sounds area.

Figure 133. Variables in the
Train_crossing sketch

Figure 134. The two created function blocks for the Train_crossing sketch

Figure 135. Import the bell sound by
draging it into the Sounds area

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

53

Content Index

Now that you have created your two function blocks, you should be able to see
them within the Arduino blocks library. Used these two blocks to build the main
part of your Train_crossing sketch by copying the blocks in Figure 138. Then
connect your board, run the sketch, and press the button to observe what happens.

Figure 136. The gates_closed function block for the Train_crossing sketch

Figure 137. The gates_open function block for the Train_crossing sketch

A
R

D
2

-I
N

N
O

V
8

 P
ro

g
ra

m
m

in
g

 L
es

so
n

s
-

S
ec

ti
on

 B

54

Content Index

Now try this

Did your Train_crossing sketch perform as expected?
If not, were you able to identify the bug, and then debug the code and system to
fix the issue?
If you were not successful with this project, remember that there is a tutorial for
this lesson available on the Firebugs Youtube channel.

If you were successful with this project, well done! You are well on your way to
becoming an experienced Arduino programmer.

Things that you should try:

•	 Examine and evaluate your system and compare it to how you think the
system should function. If you feel that there can be improvement made,
adjust the code and system parts to match your solution. Discuss your ideas
with your class mates and justify why you have made your decisions.

•	 Use an alternate trigger device for this system other than the button. You could
make it activate by light, temperature, by touching a banana, or if you are
feeling adventurous, you could try using an ultrasonic sensor to trigger this
system. Solutions and ideas for this will be available on the Firebugs Youtube
channel.

Share your solutions and ideas with other people by posting your examples on the
Firebugs and Wiltronics websites and Facebook pages.

Best of luck with your programming, and happy prototyping!

Congratulations on your
final project. You are now an

Arduino programmer!Figure 138. Code blocks within the Train_crossing sketch

https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.youtube.com/channel/UCMyan6P1S55bdANbfeemYgA
https://www.facebook.com/firebugsinnov8ion/
https://www.facebook.com/wiltronics/

P
ro

g
ra

m
m

in
g

 R
ef

er
en

ce
 -

 S
ec

ti
on

 C

55

Content Index

Double traffic light solution

Figure 139. The solution for the traffic_go function block

Figure 140. The solution for the traffic_stop function block

Figure 141. The Solution for the traffic_light2 sketch

P
ro

g
ra

m
m

in
g

 R
ef

er
en

ce
 -

 S
ec

ti
on

 C

56

Content Index

Glossary of terms

Abstraction – a process in which the details of code structures are hidden away,
leaving only the essential information to be visible in the main program.

Algorithm – a series of steps, processes, operations, or rules which is followed to
solve a problem.

Analog – data that is represented as continuously variable in value.

Array – an arrangement of data in a particular structure. A 2D array is represented
in rows and columns of data elements.

Axis horizontal/vertical – reference lines which run at right angles to each other
– can be left/right/up/down (x axis and y axis).

Boolean – a variable which can have one of two possible values – ON/OFF,
HIGH/LOW, 0/1, TRUE/FALSE, YES/NO, etc.

Cartesian plane – a plane made up of an x axis and a y axis.

Closed-loop system – a system which has an automated control and therefore
does not require manual control.

Component (electronic) – a device or part which performs a specific function –
such as an LED which emits light.

Control structure – Control structures in programming are blocks of code which
determine the way that the program will flow; they are basically the decision
making parts of the program. An IF/ELSE statement block is one example.

Data structure – a system of storing and organising data. In Arduino
programming this can be the variable with its types, an array, a function, class,
library, file, table, etc.

Debugging – the process of identifying and removing errors in the code and/
or circuit. The origin of this word goes back to the days when computers used
vacuum tubes and real bugs would sometimes cause issues.

Declare (variable) – to create and identify a variable ready for use – provide its
name (usually its type).

Define (variable) – to provide the details about the variable – what its value is:
e.g. set LED1 to 10.

Degrees Celsius/Fahrenheit – units for the measurement of temperature –
Fahrenheit is used mainly in USA.

Digital – having discrete or finite sets of values – 1 to 10, or 0 and 1.

Duration – an amount of time in which something continues.

Element – an essential part of something – the elements in a list of numbers are
the numbers themselves.

Encapsulation – the process of structuring blocks of code within functions,
classes, libraries, and other containers to restrict access and protect them.

Execute (program) – to initiate, run, or start a program to run through its
instructions.

Firmware – preloaded software which provides control and monitoring of a
system. This type of software is not accessed or changed by the user.

Frequency – the rate at which something occurs over a given length of time – can
be expressed as cycles per second etc.

Input – data used within a system. In Arduino programming physical inputs are
converted to digital electrical signals which are then processed by the program
code.

Iteration – the repetition of a process. Often used for tasks which involve a large
number of repetitions.

LED - anode/cathode – light emitting diode. An electronic device which emits
light when a currcnt is applied. The anode is the positive leg and the cathode is the
negative leg. Current can only flow one way through a LED.

List – a type of data structure which holds data elements in a single row and more
than one column. In text-based computer code lists (arrays) are counted from
zero, however, in visual-block code list are counted from 1.

Loop – a control structure that continually repeats itself forever until it is switch
off by another control structure.

P
ro

g
ra

m
m

in
g

 R
ef

er
en

ce
 -

 S
ec

ti
on

 C

57

Content Index

Matrix – a data structure which contains a collection of data into a fixed number
of rows and columns.

Nesting – when control structures are placed inside other control structures to
provide further branching options for the program to flow to.

Open-loop system – a system that does not have automated control and must
therefore rely on the user to be the controller.

Operator – a character (or code block) that represents a particular action –
examples are: TRUE/FALSE, greater than >, less than <, etc.

Output – the result from a system. Outputs can be physical or data, and can be
expected or unexpected, desired or non-desired.

Parameters & Arguments (functions) – parameters are local variables which
define how expected inputs will be used in a function. Arguments are the global
variables which are fed into functions providing values to be used within the
function.

Pitch (sound) – the rate of vibrations which determines the highness or lowness
of a sound.

Potentiometer – an electronic device used to vary values along an analog scale.
Provides a varying range of voltages via the change of resistance values.

Process – a series of steps taken in a particular order to achieve a desired result.

Prototype – an initial limited working model which is used to demonstrate that
something will work (proof of concept).

Pseudo-code – written words which resemble programming language and provide
the reader with a clear idea of how the actual program will flow.

Pullup-resistor – a resister connected in a simple circuit with a switch device
which causes the input pin on a micro-controller to read HIGH when the switch is
not activated.

PWM – pulse width modulation – a system which is used to produce a pulse of
a particular width in order to drive a device in a way which simulates an analog
output, such as the dimming of an LED or the changing speed of a motor.

Random – selected by chance. The generation of random sets of numbers are
very useful in computer programming.

Resistance – the level of difficulty by which electricity passes through an object.
A resistor slows down the flow of electric current.

Sequence – the set of order in which things flow after one another.

Sketch (programming) – The word sketch is usually only used in relation to
Arduino programming. It refers to the code and the setup of the system being
tested.

Soldering – the joining together of electronic components using metal solder
which has been melted by a soldering iron.

Square wave – a wave which moves (oscillates) abruptly between values. In
Arduino programming a square wave might oscillate between 0 volts and 5 volts
for example.

Synchronisation – an operation where two or more things happen at precise
timings.

System – something that has at least one input, one process, and one output.

text-based code – programming language which uses written text.

Threshold (programming) – a point, degree, or magnitude which when exceeded
causes a reaction.

variables local/global – a variable is a simple data structure (container for data).
A local variable can only be used within its function block. A global variable can
be used by all parts of the program.

Visual-block code – programming language which is constructed by dragging
visual ‘code blocks’ together. Scratch by MIT is a very popular visual-block
programming platform, Snap4Arduino is another.

01001100 01100101
01110100 00100000
01110100 01101000
01100101 00100000
01100110 01110101
01110100 01110101
01110010 01100101
00100000 01110100
01100101 01101100
01101100 00100000
01110100 01101000
01100101 00100000
01110100 01110010
01110101 01110100
01101000 00101100
00100000 01100001
01101110 01100100
00100000 01100101
01110110 01100001
01101100 01110101
01100001 01110100
01100101 00100000
01100101 01100001
01100011 01101000
00100000 01101111
01101110 01100101

Introduces the language and concepts
of computer programming with easy
to use visual – block coding, using

the favourite hardware platform
loved by engineers and backyard

inventors worldwide.

Coding INNOV8ion, it’s a Snap!
with the ARD2-INNOV8
1st edition
and Snap4Arduino

Seven Vinton
Seven has shared his knowledge of ICT and digital systems
technology with students and teachers via State Conferences
over his 18 year teaching career. He has inspired many students
to take up careers in technology areas and supports world-wide
sharing of knowledge through his Youtube channel ICT Tools
for Teachers. Currently the leader of Curriculum at Oberon
High School, Seven has provided support and assistance to help
schools and teachers throughout the world implement digital
learning into their curriculum.

At the time of writing this book Mark was studying year 11 at
Oberon High School. Mark got into programming via a Code
Club at his school, and from there his passion grew and along
with his knowledge. Mark has taught digital programming
to students around Victoria and interstate. He attended the
Questacon Invention Convention in 2016, and was asked
back as an ambassador for the 2017 convention. He has been
programming for 3 years and has implemented several inventions
to make work easier on his farm. Mark has established a large
following of learners which he supports via his websites and
Youtube channel Trez Tech.

Mark Trezise
Authors

Mark Trezise & Seven Vinton

Firebugs Educational Resources

https://www.youtube.com/channel/UCjxo7WuMO-4xMRY_hqqeWaQ
https://www.youtube.com/channel/UCjxo7WuMO-4xMRY_hqqeWaQ
https://www.youtube.com/channel/UCtI-5dBnlzlsssgzL-AuGfg

