How to Build your own Infrared Controlled Musical

 INFINITY MIRRORPat McMahon- V1- 15/12/2017
Note - The photos taken in this "How to Build" are using Pat's method of construction, but you may choose to use your own design method.

Design Brief - Design \& Build your own Infrared Controlled Musical Infinity Mirror and code it to run from your 14M2 Picaxe Microcontroller.

You will need the following, depending on your construction method.

In my design, so students didn't have to cut glass and mirrors, I purchased a pre made 2 glass centre panel, Floating Photo Frame from Target at $\$ 8$. On Ebay I brought the 1 mm thick Acrylic $\mathbf{2 8 0 x} \mathbf{2 8 0 m m}$ Mirror Set $\$ 15$ for 6 , the Reflective 2 Way / 1 Way Film $\mathbf{2 m \times 6 0 c m}$ for $\mathbf{\$ 6}$ (does ~ 12) and the RGB LED strip for $\mathbf{\$ 1 1 . 8 0}$ for $\mathbf{2}$ metres (only need $\mathbf{1 m}$ per mirror frame).

Front mirror (50\% reflective, 50\% transmissive)

Make your own Frame, Routing out the centre \& base, cutting a centre glass panel.
Or purchase the $\mathbf{2}$ glass panelled, Floating Photo Frame ($275 \mathrm{~mm} \times 275 \mathrm{~mm}$ outside dimensions) from Target for \$8.

You only use 1 of the 2 internal glass floating panels. It has an easy removal able rubber stopper on the base. They come in Black or Pine coloured frames.

Drill a 5mm Hole down \& across in the Frame base, to enable easy feeding of the possible 4 strands of wire to the microcontroller.

If using LED Strip, it has a removal able backing paper tape to expose the sticky backing for fixing.

Remove the backing tape as you carefully attach the LED Strip inside the frame, bending it up at the corners. Carefully cut the excess at the point marked with a pair of scissors, at the cut line.
Attach to your 14M2 Microcontroller and test to ensure the connections \& operation of the LED Strip.

\square If making your own strip ($\sim 0.8 \mathrm{~mm}$ thick aluminium) using single LED's, solder all the negatives together but ensure you wire all the positives of each of the same Coloured LED's, DON'T mix colours. Space LED's dependent on whether using short 17 mm or long 27 mm LED legs.
Thoroughly clean the internal glass panel using glass cleaner. Apply a fine spray of soapy water to the clean side of the glass.

Using the 2 Way Film, cut a piece to the size of the internal floating glass.

Bend the aluminium strip to fit into the frame allowing enough space for all the wires and bent over legs.

For ease, use temporary pieces of masking tape on either side of the film to start to separate the protective film from the actual 2 Way Film.

\square Carefully \& exactly (you might not be able to reposition it), lay the 2 Way Film on the soapy Glass panel, sticky side down on glass. Using an old credit card, carefully remove all the air bubbles working from the inside out. Trim off any excess edges, let it dry for 24 hours before use.

Using the 1 mm acrylic mirror ($\sim 280 \times 280 \mathrm{~mm}$ outside dimensions), place it over the frame, mark it and cut it to size, slowly with a sharp pair of scissors.

Drill holes for small self tappers to fix the flexible acrylic mirror to the back of the Frame, around the perimeter.

Remove the mirror front protective film only, not the white backing paper to expose the sticky backing, clean if necessary any finger marks and fix with self tappers (mirror surface facing front).

\square
Attach and program Pat's Infrared 14M2 Microcontroller, using his INFINITY MIRROR Code for the type of LED's used. ie RGB or single colour strip, or normal coloured LED's.

Notch out a small gap for the exit wires.

Tip the Frame upside down to expose the removable rubber stopper. Carefully remove it and insert the dry Inner 2Way Panel, ensuring the film side of the glass panel is facing the mirror, to get the multiple reflections (an illusion of ~ 16 deep)

\square Congratulations on Building and Programming your own INFINITY MIRROR, Well Done!

